Definite Integral Identity

Prove that \int_{0}^{\infty}\dfrac{1}{1+x^2}dx = 2\int_{0}^{1}\dfrac{1}{1+x^2}dx.
\Rightarrow \int_{0}^{\infty}\dfrac{1}{1+x^2}dx
\Rightarrow \int_{0}^{1}\dfrac{1}{1+x^2}dx+\int_{1}^{\infty}\dfrac{1}{1+x^2}dx
\Rightarrow \int_{0}^{1}\dfrac{1}{1+x^2}dx+\int_{1}^{0}\dfrac{1}{1+\frac{1}{t^2}}\frac{-1}{t^2}
\Rightarrow \int_{0}^{1}\dfrac{1}{1+x^2}dx+\int_{0}^{1}\dfrac{1}{1+t^2}dt
\Rightarrow \int_{0}^{1}\dfrac{1}{1+x^2}dx+\int_{0}^{1}\dfrac{1}{1+x^2}dx
\Rightarrow 2\int_{0}^{1}\dfrac{1}{1+x^2}dx

About Sumant Sumant

I love Math and I am always looking forward to collaborate with fellow learners. If you need help learning math then please do contact me.
This entry was posted in Integrals, Trick. Bookmark the permalink.

Leave a comment